SPECIAL

L el

SURRIEMENIS

HE adoption of MIDI by all the major electronic musical instrument man-
ufacturers, and the inclusion of MIDI sockets on an increasingly wide
range of equipment, has certainly revolutionised electronic music mak-
ing. MIDI stands for “‘Musical Instruments Digital Interface”, and it is a means
of exchanging information between electronic musical instruments, or any

squipment related to electronic music production.

Although MIDI is regarded by many as nothing more than a modern
alternative to the old gate/CV method of interfacing synthesisers, or a means
of synchronising drum machines, it actually has capabilities which go well
beyond this. This supplement is designed to help you exploit some of the
many MIDI facilities, or to simply start to use the MIDI facilities in conjunction

with a BBC Micro.

The first article describes a BBC/MID! Interface by Mike Hughes.

Q UITE a number of medium priced elec-
tronic musical keyboards are now pro-
vided with MIDI (Musical Instruments
Digital Interface) circuitry but, unless you
are into music in a big way or are prepared
to spend a lot of money on special
hardware interfaces, it is possible that you
have never experimented with that very
sophisticated piece of hardware lying dor-
mant in your instrument (If you already
have experience of MIDI the following
projects—MIDI MERGE and MIDI
PEDAL—will no doubt interest you).

If you have a BBC Model B computer
you can, for the outlay of a few pence and a
bit of software, turn it into a controller for
your keyboard. With a suitable supporting
program (which can be written in BASIC
or better still in Assembler) you can get
your computer to play polyphonic tunes,
sequence rhythm patterns or provide a
vamping bass whilst you practice with the
melody.

This article describes the hardware inter-
face required and gives a short program
listing to provide the fundamentals on to
which you can build your own more
specialised software

MIDI MIGHT BE THERE

You can tell if your keyboard is equipped
for MIDI interfacing by looking for a
couple of innocent five pin DIN sockets
labelled MIDI IN and MIDI OUT.
Because of the simplicity of our interface
you will only be able to drive the keyboard
from the computer so we shall be mainly
interested with the MIDI IN socket.

Everyday Electronics, March 1989

If your keyboard is equipped with MIDI
you may not be aware that whenever you
press a key (or a set of keys) the instrument
sends out three serial 10 bit digital codes to
the MIDI OUT socket describing each key
that is pressed or released. These codes
would be used to control another keyboard
or a synthesiser etc.

Likewise the keybord is constantly
checking the MIDI IN socket to see if simi-
lar sets of codes are being transmitted to it
from another instrument or, as we shall be
doing, from a computer.

The code numbers describe such things
as:
a) Is a key being pressed and, if so,

which one.

b) Has a key just been released and, if
so, which one.

c) Which instrument should respond to
the signal (if several instruments are
connected together).

d) For touch sensitive keyboards—how
hard the key was hit.

This list is by no means fully comprehen-
sive of the whole set of MIDI instructions
but these are the relevant ones as far as this
article is concerned.

HIGH SPEED IS VITAL

If you imagine that for every key pressed
or released three lots of ten bits of data (30
bits in all) have to be transmitted then you
will appreciate that the data has to be trans-
mitted at a very high speed to cope with fast
moving musical chords. The alternative
would be for parts of the music to be left
out which would, of course, be totally
unacceptable.

To cater with this situation MIDI serial
data has to be transmitted at the unusually
high rate of 31.25 kilobaud which means
31,250 bits per second. This rate was cho-
sen as a reasonable compromise between
the fastest speed of playing, practical com-
munications technology, and also because
the 31.25 kilobaud clock rate can be
obtained by a simple binary division from
1, 2 or 4 MHz. For example 2 MHz divided
by 64 provides a frequency of 31.25 kHz.

This baud rate ensures that a 10 bit serial
word willl be transmitted in 320 micro-
seconds and the group of three codes (to
define a “key down” or a ‘‘key up’’ move-
ment) in less than a thousandth of a sec-
ond—fast enough for most styles of playing
even if chords are involved!

THE SERIAL FORMAT

The basic equipment of MIDI transmis-
sion is the 10 bit word made up of a start bit
at logic level “0” followed by 8 bits of data
(which is the code number in question) and
terminated with a single stop bit at logic
level 17, The start bit and bits of the data
each take 32 microseconds to transmit and
the connecting wire goes to logic level “1”
for the stop bit and stays at that level until
the beginning of the next word.

Conceptually it is a simple matter to
make a computer output a sequence of
“ones” and ‘‘zeros” at an output port and
provided that the computer is fast enough
and the program runs at a controlled speed
it is fairly easy to generate this basic MIDI
serial word.

175

THE BBC COMPUTER IS

FAST ENOUGH

Fortunately the BBC Model B has a fast
enough clock to provide the 31.25 kilobaud
rate required (provided certain pre-
cautions are taken) but the program has to
run extremely fast. For this reason the
transmission software has to be assembled
into machine code. Unfortunately, for this
application, the BBC computer makes
extensive use of interrupts which break
into any other operation taking place. If
this was allowed to happen during the
transmission of a word the baud rate timing
would be disrupted. Itis, therefore, neces-
sary to disable the computer's interrupts
whenever transmission takes place.

The BBC machine has a convenient User
Port which can be used to output the data
but the signal levels at this port are normal
TTL voltages and this does not exactly
meet the input characteristics of a MIDI IN
socket. To appreciate the difference it is
useful to understand the standard MIDI
input hardware specification which is based
on a 5mA “Current Loop”.

CURRENT LOOP AND
OPTO ISOLATION

To minimise earth loop problems (which
give rise to mains hum in complex intercon-
nected audio systems)—and also to avoid
expensive damage by wrong connec-
tions—the keyboard’s MIDI IN socket is
protected by an optical isolator consisting
of an l.e.d. optically coupled to a photo-
diode. The transmitted data activates the
l.e.d. inside the keyboard and the photo-
diode detects the changes and passes the
digital signals to the rest of the keyboard's
circuitry. The l.e.d. requires a current of
SmA to illuminate and this current is
derived from the source of transmission
which, after flowing through the le.d.,
returns to the transmission source—hence
the term ““Current Loop™.

The input specification requires the
Le.d. to be illuminated for a transmitted
logic level “0". This means that during a
stop bit (and whilst waiting for the next
word) the Le.d. is extinguished.

CIRCUIT

The BBC’s User Port is not directly cap-
able of providing this SmA current drive, It
is, however, a very simple matter to con-
vert the TTL voltages into a current of

R2
> 330
+5v
MO TINT
DIN PLUG
USER PORT
CONNECTOR ¥ PBO
Ic
SN7405
L ov
Fig. 1. Circuit of the BBC/MIDI Interface.
SmA which has the right polarity and logic
sense to match the MIDI input require-
ment. This converter is the only piece of
hardware required and it can be made out
of two inverters from an SN7405 (standard rwﬂisgéﬁ‘gTOF

TTL hex. open collector inverter) and
three resistors as shown in the schematic
drawing (Fig. 1). The prototype was made
up on a small piece of matrix board glued to
the back of a 20 pin User Port plug, Power
is taken from the User Port socket itself.

The converter’s output is fed down a
screened lead (not to exceed 50 feet in
length) to a standard 5 pin (180 degree)
DIN plug. It is vitally important that the
+5V rail, through R2, goes to pin 4 of the
DIN plug. This is the pin identified by the
figure 4 moulded into the base of the DIN
plug. The inverter's output, through R3,
goes to pin 5 of the DIN plug. If you get
these connections the wrong way round
current will try to flow the wrong way
through the keyboard's l.e.d. and no sig-
nals will be received!

MACHINE CODE
TRANSMISSION
ROUTINES

The Assembler Language listing con-
tains four machine code sub-routines which
are designed to reside in memory well out
of harms way below PAGE. These, once
loaded, can be called from any BASIC
program as required.

When SETPORT is called (use the state-
ments CALL SETPORT or CALL &COO
depending on whether SETPORT has
been defined as a variable) it simply defines
the least significant bit of the User Port
(PBO) to be an “*Output Bit". This should

0O 00O0OOQCOQO o 0
OOOOOO0,0P

1 19
T0 DIN { ._F 0 DIN

S ET '
DK [\e SOCKET
R3I PIN &
L¥d
1
—

PIN S
BREAK ALL TRACKS UNDER ICT1

FEEEEEEE)

of »

ofjojojojoicjofole
clejelefjelefofelo

afofojolcle
ofofolclo
clejejajefejelelc
ofofojofo]e

aofefjojojofojolcle
ofjojajojofo

o

T Nomworx -
L =t R=d E=3 L0 E=1 o] L k=

:

Fig. 2. Construction of the MIDI
Interface

be one of the first things you do in your con-
trol program.

SEND is the main transmission sub
routine and before calling it from BASIC
you must first of all set the variable A% to
the code number that is to be transmitted.
When SEND is called the contents of A%
are automatically transferred to the micro-
processor’s Accumulator. The statement
to use is CALL SEND or CALL &COB.

The first thing SEND does is temporarily
store the contents of the accumulator on to
the stack and sets the User Port output to
zero (Lines 170-190). This creates the
beginning of the serial start bit which has to
be held for 32 microseconds. This precise
time delay is produced by the call to
DELAY in Line 200 followed by a NOP
which is a small timing correction factor.

Lines 220 and 230 recover the original
data off the stack and get ready to transmit
the eight bits in serial fashion. Sequential
transmission of the eight bits is done by
Lines 270-310 by rotating the accumulator
right and sending the result to the User
Port eight times. Each time this is done a
delay of 32 microseconds is generated. In
this fashion each bit from the accumulator
(starting at the least significant bit) is out-
put from User Port PBO and, from the out-
side world this looks like a serial stream of
data.

FINISH completes the sub routine by
outputting logic level ““1” (the stop bit) at

Everyday Electronics, March 1989

LEVEL"1"FROM
PREVIOUS ===~
BYTE

TART BIT

LSB. —

S
o
g
o

MSB. |
STOP BIT

Fig. 3. Format of a MIDI serial byte of
data.

the User Port. This is, once more, held for
at least 32 microseconds before the sub
.routine returns to BASIC.

The remaining two sub routines are
IOFF and ION which respectively switch
off the internal interrupts of the BBC com-
puter (to ensure precise timing of the
SEND routine) and restore them. In prac-
tice these could be incorporated directly
into the beginning and end of the SEND
routine but have been left as separate call-
able routines for versatility. It is essential
that IOFF is called by BASIC (use CALL
IOFF OR CALL &C31) before SEND is
called and, for convenience, ION should
be called immediately after the return from
SEND (use CALL ION or CALL &C33).

'ODES YOU HAVE
TO SEND

There are a large number of MIDI con-
trol codes (all of which have very useful
purposes) but the sheer quantity of them,
and complexity of some of them, can be a
bit awe inspiring. Furthermore some codes
are not supported by some keyboards and
this can often give rise to confusion. For
this reason we shall limit ourselves to con-
sidering just two codes which, by their very
definition, have to be universal to all MIDI
keyboards. These are the codes which tell a
note to start sounding and stop sound-
ing—how fundamental can you get!

Do not scoff at such a simple approach
because you can do an awful lot and pro-
duce spectacular music with just these two
code sequences.

Each of these two codes is made up of
three separate 8 bit bytes of data. The first
byte defines the operation together with
the channel numbers (i.e. the identification
number, or address, of the instrument

Jhich is to receive the data); the second
oyte defines the number of the note (Mid-
dle “*C” is always note number 60 in MIDI
parlance and other note numbers can be
worked out by adding or subtracting 1 for
each semi-tone up or down from Middle
“C” soTop “C"” is note 72 and Bottom “C”
in note 48. Likewise Middle “G™ is note 67
and so on).

The third byte defines the rate at which
the key was hit or released—this is specifi-
cally for touch sensitive keyboards but we
shall use the default values which will apply
to non touch sensitive instruments.

THE “NOTE ON”
SEQUENCE

To make a specific note start sounding
you have to send the three byte code
described above. The first byte is made up
of the following binary pattern:

1001xxxx

where xxxx, the least significant “nibble”,
defines the Channel Number that the
receiving instrument is set to. Here is the
first bit of potential confusion; the binary
nibble 0000 is zero but it is used to define
Channel 1 on the receiving instrument and
although 1111 in binary means 15 in denary

Everyday Electronics, March 1989

it defines Channel 16. Fortunately we don’t
have to worry about this because, to make
our system fairly foolproof, we shall oper-
ate in MIDI's “Omni” mode which means
that ANY instrument will respond to
Channel 1 unless it has been specifically set
to something different.

In more simple terms the first byte is set
to the decimal number 144 plus the binary
version of the Channel Number. In the case
of Channel 1 we simply have to add zero.

The second byte is the number of the
note—as already described. It can be any
value between 1 and 127 with 60 describing
Middle “C”. In practice five octave organ
keyboards range from about 36 to 96
whereas full size piano keyboards range
from about 21 to 108.

The third byte describes the rate of
pressing a key but for non touch sensitive
keyboards you should use the value of 64.

Therefore, to make Middle “C” start
sounding you have to send the following
decimal numbers to the keyboard:

144,60,64

THE “NOTE OFF”
SEQUENCE

The sequence which stops a note sound-
ing follows the same sort of pattern that is
used to start a note except that the first byte
is constructed as follows:

1000xxxx

i.e. 128 plus the binary equivalent of the
Channel Number.

The second byte defines the note which
is to stop—exactly as before—and the third
byte is the key release velocity which, for
non touch sensitive keyboards, should
always be zero.

The code sequence to stop Middle “C”
sounding should, therefore, be:

128,60,0

PLAYING A CHORD

To play a chord of “C Major” requires
the Middle notes C, E, G and Top C to be
played simultaneously and held down for
the duration of the chord. In long hand the
MIDI sequence to be transmitted in words
and numbers would be:

Start Middle C 144,60,64
Start Middle E 144,64 ,64
Start Middle G 144,67,64
Start Top C 144,72 .64
Wait for the duration of the chord
Stop Middle C 128,60,0
Stop Middle E 128,64,0
Stop Middle G 128,670
StopTopC 128,72,0

Note that it is very important to keep a
record of notes which have started so that
you can stop them at the required point in
time. They will not stop unless you tell
them to and that can lead to terrible dis-
chords!

HOW TO USE THE

DRIVER ROUTINE

The simplest way to get used to MIDI
interfacing and developing programs is to
start in an elementary way. First of all type
in the Assembly Language program for the
driver and save it to disc or tape before run-
ning it. Run it and the machine code will be
set up in memory from location &C00.
Clear the memory by typing NEW and
then, after connecting the current loop

driver between the computer and your
keyboard, try making Middle “C” sound
for a short while by entering and running
the following short BASIC program
(NOTE Don’t type in the comments):

10 CALL &CoU ! Setup the output part

20 CALL &C3t Switch off interupts

Z0 A%Z=144

40 CALL %CuB Transmit it

S0 AZ=60 Define Middle C

&0 CALL wcom Transmit it

70 A%=64 Define key on velocity

80 CALL %COB Transmit it

90 FOR X=1 TO S500: NEXT X Note duration

100 A%=1Z8 Set note off byte % Channel

11Q CALL &COR Transmit it

120 A%=60 Define Middle C

130 CALL %COB Transmit it

140 A%=0 Define key off velacity

150 CALL &CoBR Transmit it

140 CALL &C33 Enable interupts

Take particular note of Line 10 which
sets up the configuration of the output port
and Lines 20 and 160 which, respectively,
disable and enable the computer’s inter-
rupts.

There are obviously shorter cut methods
of writing such a fundamental program
which has such a large number of repeated
operations but we have written it in
sequential form to emphasise the order in
which the codes have to be transmitted.

A shorter, and more versatile program
could be written around DATA statements
using an unused code, like 255, to define
the pause. For example the following prog-
ram plays the chord of C Major:

10 CALL &CO0

20 CALL &C31

30 FOR X=1 TQ 25
40 READ A%

S50 IF A%Z=235 THEN FOR Y=1 TO S00: NEXT Y:
G010 70

60 CALL %COB

70 NEXT X

80 CALL AC33

90 END

100 DATA 144,50,54,144,64,48,144,67 ,64
110 DATA 144,72,64,255,128,60,0,128,64,0

120 DATA 128,67,0,128,72,0

We chose a program to play a static
chord to show that the system is polyphonic
and there is, in theory, no limit to the
number of notes which can be played
simultaneously.

CHROMATIC SCALE

The following example shows how you
can, play a single note chromatic scale bet-
ween Middle C and an octave above Top C:

177

Set start note byte % Channel

e

10 CALL %C0O0: REM Set up output port
20 CALL &C31: REM Disable interupts
30 FOR XZ=&0 TO 84

40 PROCEtransmit

SO NEXT X%

&0 CALL 4C33: REM Enable interupts
70 END

80 DEFPROCtransmit

70 A%L=144: CALL XCOB

100 AZ=X% : CALL &COR

110 A%=64 : CALL XACOE

120 FOR Z=1 TO 100: NEXT Z
130 A%=12B: Call %COB
140 A%=Xx7% : CALL %COB
150 A%=0 : CALL %COB

1460 ENDFROC

TAKING IT FURTHER

Use of the other MIDI codes is beyond
the scope of this particular article but we
hope we have wetted your appetite.
Clearly a lot of enjoyment can be gained
from controlling your keyboard from
software and the largest part of such a pro-
ject is developing software that can make
the most of the interface.

For those who would like to go further
(but do not have programming skills) a
complete compiler program is available on
40 track DFS disc or tape which allows you,
in a very simple and speedy way, to write
your own polyphonic music or backing,
save it back to disc or tape and play it
through your keyboard.

The software has been specially written
to support this article but is too lengthy for
printed publication. Your tune, which can
have 12 note polyphony, is speedily written
directly on to the screen and is held as
machine code which allows long composi-
tions and also permits repetitive sections to
be looped or played at varying tempos. The
program also permits keyboard voices to
be changed while the music is playing.
Included with the programme are a couple
of sample tunes.

COMPONENTS

Resistors
R1 . ak7 d
R2 330
R3 120 See page 193

All VaW carbon

Semiconductors
IC1 SN7405Hex inverter

Miscellaneous

Plug to suit the BBC Micro User
Port (20 pin); five way 180° DIN
plug; Veroboard, 9 strips by 10
holes, 0.1 inch matrix; connecting
cable.

Approx. cost

Guidance only f 4 plus software

178

Copies of the program and
instructions can be obtained direct
from Mike Hughes at 2 Oaklands
Lane, Biggin Hill, Westerham,
Kent, TN16 3DN. Please state
clearly whether you want Disc or
Tape when you order with your
remittance of £10 for disc or £7 for
tape (including post and packing).

LISTING OF
FUNDAMENTAL
DRIVER ROUTINES

The following program
produces the machine code sub
routines which, as described in the
main article, output a MIDI 10 bit
word (one start bit, eight data bits
and one stop bit).

The program should be typed in
and saved to disc or tape before
running it. When you run it the
code is assembled from location
&C00.

You can, if you wish, use this
listing to precede any BASIC
program which you generate
yourself. In this case your basic
program should begin at Line 630
and you will have the advantage
that you will not need to call the
sub routines at their numeric
addresses; you would simply have
to use CALL SETPORT, CALL
SEND, CALL IOFF or CALL
ION as all the address variables
will have previously been defined
by the previous part of the
program.

Remember that this program is
only of use if you use the current
loop interface between your BBC
Model B and your keyboard.

FOR opt%=0 TO 3 STEP 3
P%=%C00
C
OPT optZ%
1
\ Call SETPORT to define port config
.SETFORT LDA #1
STA UFE&2
LDA #1
STA 4FE&0
RTS

\ Put transmit data in A% and Call SEND.
\ SEND transmits single start bit

. SEND PHA
LDA #HO
STA &FE&Q
JSR DELAY
NOP
LDX #8
FLA

\ BYTE runs on to transmit data in A%

.BYTE STA R/FE&O
JSR DELAY
ROR A
DEX
BNE BYTE

N FINISH transmits single stop bit
\ and returns you to BASIC

.FINISH LDA #1
STA WFE&OD
JSR DELAY
RTS

.
\ DELAY loop of B gives precise baud rate

[l
.DELAY LDY #8
.LDOOP DEY
BNE LOOP
RTS
1
\ Call IOFF before calling SEND
\ Interupts have to be disabled to
\ ensure correct baud rate
1
. 10FF SEIL
RTS
H
\ You must call IDN to restore

\ interupts after return from SEND
\ otherwise keyboard will be locked but
- ION CLI
RTS
b}
NEXT

Everyday Electronics, March 1989

SlMRIEM

i

HUN

Robert Penfoid

tronic music systems were something

of a rarity. These days sophisticated
computer controllers and polyphonic
multi-timbral instruments have much more
modest price-tags, and are generally vastly
superior to the top-flight instruments of a
few years ago. With a few pieces of MIDI
equipment there are almost limitless musi-
cal possibilities.

There are also a large number of ways in
which a given set of MIDI units can be
organised into a system. In some cases
‘what might be quite desirable might also be
impossible due to a lack of MIDI ports to
permit everything to be fitted together in
the desired fashion. Usually a very simple
add-on s all that is needed in order to facili-
tate the required method of connection.
The two standard add-ons for these situa-
tions are MIDI THRU boxes and merge
units. A THRU box (as described in the
July 1987 issue of Everyday Electronics)
simply takes a MIDI input signal and splits
it to provide two or more buffered outputs.
A MIDI merge unit provides the opposite
function, and combines two MIDI signals
into one.

A sophisticated MIDI merge unit will
operate with signals on both inputs simul-
taneously. It takes signals on one input and

I N THE pre-MIDI era sophisticated elec-

passes them through to the output, while
signals on the other input are stored in a
buffer until the output is free and they can
be transmitted. Provided the two sources
do not provide so much data that the unit
becomes overloaded, this gives good
results with no significant time-shifting of
any MIDI messages.

While advantageous in some cir-
cumstances, a merge unit of this type is
quite complex and expensive as it needs to
be microprocessor based. For most pur-
poses something that simply couples two
inputs through to a single output will suf-
fice, but simultaneous operation on both
inputs must be avoided. This would give a
scrambled output that would result in a
malfunction of the system. A unit of this
type should really be regarded as an alter-
native to a MIDI switch, but it has the
advantage of effectively being automatic in
operation.

USES

A simple application for a MIDI Merge
Unit would be in a setup of the type
depicted in Fig. 1. Here a synthesiser
(which could be arack mounted type rather
than a keyboard instrument) is played from
a MIDI keyboard. The latter could be a
synthesiser with the second instrument act-

Fig. 1. A simple MIDI system using a

ing as a “slave” to it, or it could be just a
MIDI keyboard.

Suppose that the synthesiser will some-
times be used with a step-time sequencer
such as a computer running a notation
program. Either a lot of plugging and
unplugging will be needed, or some form of
switch or merge unit is required to feed sig-
nals from the desired controller to the
MIDI “IN” socket of the synthesiser. As
explained previously, a merge unit has the
advantage of effectively giving automatic
switching. It can be connected up and then
largely forgotten!

Although it might seem to be possible to
obtain much the same effect by feeding the
output of the sequencer to the input of the
keyboard, this will not work. The input sig-
nal appears on the “THRU” output and
not at the “OUT” socket (apart from a few
instruments which can be switched to this
non-standard mode of operation). Driving
the synthesiser from the “THRU” output
of the keyboard will not work either. The
keyboard’s output signal does not appear
at this socket.

Another arrangement is shown in Fig. 2
in which a simple merge unit can be used to
good effect. Here two synthesisers have
been “‘chained” together and are being
played from a separate keyboard. A MIDI
pedal unit is used to provide program
change messages to switch to different
sounds from the synthesisers at the approp-
riate times. A merge unit enables both the
keyboard and the MIDI pedal to drive the
synthesisers, but with a simple merge unit
of the type described here it is necessary to
take care not to operate the pedal and the
keyboard simultaneously. Once again,
with most keyboards it is not possible to
obtain the desired effect by feeding the out-
put of the MIDI pedal to the keyboard’s
“IN” socket.

As a point of interest, most MIDI
keyboards have a ““local off”’ mode, where
the keyboard is disconnected from the
sound generator circuits. The keyboard
still functions and drives the MIDI “OUT”

Fig. 2. A more complex setup using a merge unit.

mergeunit. l__-l I
[1 I T IN THRU ouTt
IN THRU OUT IN1 HIDI SYNTHESISER
S8EQUENCER BEDNL HIDI
B HEfcE W W] o -
s T IN B ouT
] — l
IN THRU ouT IN THRU ouT IN THRU ouT IN THRU ouT
MIDI KEYBOARD BYNTHEBIBER MIDI KEYBOARD S8YNTHESISER
Everyday Electronics, March 1989 179

Fig. 3. The simple MIDI Merge Unit circuit diagram.

socket, and the sound generator circuits
still respond to information received via
MIDI. The instrument is effectively turned
into a separate keyboard and MIDI sound
module. The setup of Fig. 2 could therefore
be implemented wusing a synthesiser
switched to the “local off’” mode to act as
the separate keyboard and one of the
synthesisers.

THE CIRCUIT

A unit of this type can be very simple
indeed, as will be apparent from the circuit
diagram of Fig. 3. MIDI outputs are gener-
ally open collector types, and a simple
merge function could conceivably be
obtained simply by connecting two outputs
in parallel. As the exact forms of output
stages used are unknown quantities, and it
is quite likely that none of the MIDI ouput
terminals will be at earth potential, this

COMPONENTS

Resistors a
R1,R4 220(2off) See
R2,R3,R5 1k(3off) page 193

All 0.25 watt 5% carbon.

Semiconductors
1C1,1C2 6N139 Darlington
opto-isolator
{2 off)

Miscellaneous
SK1toSK3 5way180degree

SK3 DIN sockets (3 off)

S1 S.P.S.T.sub-
miniaturetoggle
switch

B1 9volt battery
{PP3size)

Printed circuit board available
from EE PCB Service order code
EE640; case about 180mm X
120mm X 40mm; battery connec-
tor; pins; wire; solder; etc.

£14

Approx. cost
Guidance only

180

would be more than alittle risky, and is cer-
tainly not to be recommended. It is better
to have a simple combiner circuit, such as
the one described here, which has an opto-
isolator at each input. This ensures com-
plete isolation between the two sources.

The MIDI baud rate of 31.25 kilobaud is
high enough to make it difficult to feed the
signal through a relatively slow component
like an opto-isolator and obtain a reason-
ably accurate reconstruction of the signal at
the output. Ordinary opto-isolators of the
type which use an infra-red l.e.d. and a
photo-transistor seem to be totally
inadequate, and even the high efficiency/
high speed types seem to be barely
adequate for this application.

In this circuit a slightly different type of
opto-isolator is used, and this is a compo-
nent which has one transistor in the emitter
follower mode, driving another which acts
as a common emitter switch. This config-
uration might look rather like the familiar
Darlington Pair arrangement, but it is not,
as the collector of the two transistors are
not connected together. Darlington
devices offer good sensitivity but are very
slow, and totally unsuitable for this appli-
cation.

In fact the configuration used here is too
slow without the inclusion of the emitter
load resistor for the first transistor in each
opto-isolator (R3 and R5). This ensures

that the emitter follower stage operates ata
reasonably high current, and that it oper-
ates suitably fast. Using a 16kHz
squarewave test signal (which is compara-
ble to a MIDI signal) there is no significant
degradation of the waveform through the
unit. In theory this circuit should operate at
something like ten times the MIDI baud
rate, and it should give excellent reliability
with MIDI signals.

OUTPUT

On the output side of the circuit, the two
open collector outputs are simply wired
together, and connected to the output soc-
ket via a common current limiting resistor
(R2). Note that current limiting resistors
are included at each input, as called for by
the MIDI standard. This is presumably to
protect the l.e.d.s in the event of equip-
ment being connected incorrectly.

Power is obtained from a nine volt bat-
tery. This should have a long operating life
as the maximum current consumplion
(with a continuous stream of data) is only
about 2.5 milliamps, and the current con-
sumption under stand-by conditions is
likely to be no more than a few microamps.
If the unit should happen to be accidentally
left switched on for long periods it is
unlikely that the battery will discharge to
any significant extent.

CONSTRUCTION

Details of the printed circuit board are
shown in Fig. 4. Construction of the board
is very straightforward, but do not over-
look the single link-wire. The opto-
isolators are not static sensitive devices,
but as they are not particularly cheap 1
would recommend that they are fitted into
sockets. At this stage only fit pins to the
board at the points where the connections
to off-board components will eventually be
made.

I used a case having approximate dimen-
sions of 180 by 120 by 40 millimetres, but
the unit could be fitted into a much smaller
case if desired. The three sockets and the
on/off switch are mounted in a row along
the front panel of the unit. The input and
output sockets are five way (180 degree)
DIN types, which are the standard MIDI
connectors. Each socket requires two short
round-head 6BA fixing screws plus match-
ing nuts. The printed circuit board is
mounted on the base panel of the case
using M3 or 6BA mounting screws plus
spacers, or plastic stand-offs.

Everyday Electronics, March 1989

I—: EE64O

The small amount of hard-wiring is then
added, using ordinary insulated multi-
strand connection wire. Fig. 5 shows the
wiring to the three sockets. This method of
connection enables the unit to be wired
into a system using standard MIDI cables.
If you wish to make your own cables, twin
screened lead is required.

The inner conductors are used to con-
nect pins 4 and 5 on one plug to the same
pins on the other plug. Cross-over connec-
tion (i.e. connect pin 4 on one plug to pin 5
on the other) must not be used. Apparently
some ready-made audio DIN leads do use

DIiRE

Fig. 4. Details of the printed circuit board.

cross-over connection, and are con-
sequently unsuitable for MIDI use. The
cable’s screen is used to connect pin 2 on
one plug to pin 2 on the other plug.

TESTING

In order to test the unit it is merely neces-
sary to connect a MIDI controller of some
kind to each input, and to couple the out-
put to a MIDI instrument. With the merge
unit switched on, operating either control-
ler should then produce the appropriate
result from the instrument. If not, switch
off the merge unit and recheck all the wir-

J[EEhy
- Lu’ﬂ@fn ;e

Fig. 5. The wiring ofthe

sockets.
D C F E
/';\ 7 o N\
4 2 &/ O, 2 <
O, 3043 [o) s |
SK2 SK3

ing. Also, make sure that the MIDI equip-
ment is all operating on suitable modes,
channels, etc. o

Robert Penfold

HIs MIDI Pedal project exploits one

I of the extra MIDI facilities; the

program change messages. These

messages are one of the more versatile

aspects of the MIDI system, and this unit

can be used to good effect with a wide
range of MIDI equipment.

QUICK CHANGE

There are two basic types of MIDI mes-
sage, which are the channel and system
types. The note on/off messages are the
most common channel types, and these
carry a channel identification number so
that they can be directed to one particular
instrument, or even to one voice of one
particular instrument in the system. The
system messages, which include the so-

called MIDI clock timing signals, are
directed to everything in the system, and
cannot be targeted at one particular item of
equipment or voice of an item of equip-
ment.

One of the most useful of the MIDI
channel messages is the program change
type. MIDI messages always start with a
header byte which contains the code for the
message involved, plus the channel
number where appropriate. This header
byte is then followed, where necessary, by
one or more data bytes. The program
change message has just one data byte,
which is the new program number in the
range 0 to 127.

Note that MIDI distinguishes between
instruction and data bytes by having the
most significant bit of instruction bytes
always set to 1, and those of data bytes

OFF
"
ON

RESET

@

ot

always set to 0. This leaves only seven bits
left for data, and gives a range of 0 to 127
rather than 0 to 255. '

Some parts of the MIDI specification are
rigidly defined, while other parts are left
extremely vague. While I suppose that the
vagueness can be a drawback, it does per-
mit great versatility. The program change
message is a good example of this. Each
program is really a collection of control set-
tings rather than a program in the normal .
computer sense. The MIDI specification
does not lay down any rules as to what con-
trols can be included under the command
of program change messages, and this is
eatirely at the discretion of the equipment
designers.

This has the drawback that just what
each program number represents varies
from one piece of equipment to another. It
could even be different for two items of
gear of the same type, because one might
have been set up differently to the other. It
gives great versatility though, since virtu-
ally anything can be controlled via MIDI
program change messages.

In most cases these messages are used
with instruments where each program is a
different group of settings for the envelope
shapers, filters, etc. In other words, each
program produces a different sound from
the instrument, and changing from prog-
ram 1 to program 2 could switch from a
piano to an organ sound for instance. It is
important to realise that each program is a
series of preset control settings, and that

181

program change messages do not permit
adjustment of individual controls (which is
possible via the control change messages).
However, for many purposes switching
from one range of settings to another is all
that is required.

MIDI UNITS

There are now a wide variety of MIDI
controlled units available, including effects
units and audio mixers. These are mostly
controlled via MIDI program change mes-
sages. Taking an effects unit as an example,
this could be fed from the MIDI OUT soc-
ket of a synthesiser, and the latter could be
set up to transmit program change mes-
sages each time its program was changed by
way of the front panel controls. The effects
unit would then change programs in sym-
pathy with the synthesiser, and it could be
set up to provide a suitable effect to
enhance each sound produced by the
synthesiser.

A MIDI pedal generates a program
change message each time the foot-switch
is operated. The most basic way of using a
MIDI pedal (but a very effective one) is to
have it driving the MIDI IN socket of a
synthesiser or other MIDI equipped instru-
ment. This permits the “no hands”
approach to changing sounds. There are
numerous other ways in which a MIDI
pedal can be utilized though. It could be
used to drive an effects unit, or both an
instrument or an effects unit, or any equip-
ment that responds to program change
messages for that matter.

This MIDI pedal simply increments the
program number by one each time the unit
is activated. The program would presum-
ably be set at O initially, but whatever the
initial setting, the first operation of the
pedal switches it to program 1, the next
switches it to program 2, and so on. This
method enables the electronics of the pedal
unit to be kept reasonably uninvolved, but
it is compatible with most MIDI equipment
where any desired control settings can usu-
ally be assigned to cach program. It is not
of much use with any items of equipment
that have factory preset programs which
are not user redefinable.

In order to obtain worthwhile results it
must be possible to set up the programs of
the instrument so that the required sounds
are obtained as the pedal is used to take the
instrument through a sequence of prog-
rams. However, I have not encountered
any units of the purely preset type, and
most MIDI equipment seems to be
designed to make it reasonably easy to set
up each program in the desired manner.

In many cases the pedal will be used with
equipment set to the “omni”” mode, where
messages on all the MIDI channels are
accepted and responded to. The pedal unit
can be preset via an “‘on-board’” hex switch
to transmit on any one of the sixteen MIDI
channels, and is therefore usable in a setup
where operation on a specific channel is
essential. The unit has two MIDI OUT
sockets, and it is self contained with power
being provided by an internal nine volt bat-
tery.

SYSTEM OPERATION
MIDI is a serial system which is very
much like the standard RS232C type. It dif-
fers from the RS232C system in that it
operates at the relatively high baud rate of
31250 baud, which is not a standard
RS232Crate. Also, it does not use ordinary
RS$232C signal levels. In fact it is a current

182

loop system which has an opto-isolator at
each input. It operates at a nominal current
of five milliamps.

The arrangement used in this unit is
shown in Fig. 1, albeit in somewhat
simplified form. The UART (universal
asynchronous transmitter/receiver) is at
the heart of the unit, and it is this that gen-
erates the basic serial output signal.
UARTSs are better suited to this type of unit
than most other serial devices, as other
types are almost invariably only suitable
for microprocessor based circuits. A cru-
cial feature of UARTS for a relatively sim-
ple unit of this type is that they can be prog-
ramed via link-wires connected to control
inputs, and they do not have to be set up
under software control.

UART

The “raw” output of a UART is not
MIDI compatible, but a couple of simple
inverter/driver stages are all that is needed
in order to provide two outputs having the
required five milliamps of drive. A clock
oscillator sets the baud rate at the correct
figure.

A UART provides a parallel to serial
conversion, and will provide any standard
word format. For MIDI operation a word
format of one start bit, eight data bits, no
parity, and one stop bit is required. This
format is programmed into the device sim-
ply by taking five control inputs to the cor-
rect logic states.

In order to transmit the program change
messages it is merely necessary to feed the
first byte onto the data bus, and then sup-
ply a brief pulse to a control input of the
UART to initiate transmission of this byte.
The second byte (the new program
number) is then fed to the data bus, and the
control input of the UART is then pulsed
again. The data byte is provided by a binary
counter which must be incremented each
time the unit is activated, so that the prog-
ram number is automatically advanced
cach time the unit is operated.

The UART’s parailel input bus is fed
from two octal tristate buffers. A tristate
output is one that can have the usual high
or low output levels, but can additionally

take up a third state where it is deactivated
and provides a high output impedance. In
this case the two_bufers are controlled by
the Q and not Q (Q) outputs of a divide-by-
two flip/flop, and only one or the other will
be activated and drive the input data bus of
the UART.

CHANGE CODE

Initially it is the upper of the two buffers
that is activated, and this feeds the output
from a simple code generator circuit
through to the UART. The code generator
simply produces 1100 (in binary) as the
most significant nibble, and this is the prog-
ram change code, The least significant nib-
ble can be varied from 0000 to 1111 (again
in binary) by means of a switch circuit, and
this sets the MIDI channel number.

When operated, the foot switch sets a
bistable circuit. This in turn activates a
gated oscillator which drives a control logic
circuit, and via this, the flip/flop. The
pulses from the oscillator and control logic
blocks first activate the UART so that the
header byte is transmitted. A subsequent
pulse clocks the flip/flop to its alternative
output states so that the output from the
second buffer is fed through to the UART.
This buffer is fed from a binary counter,
and as explained previously, the most sig-
nificant bit for data bytes are always set to
logic 0. This counter is consequently a
seven bit type, and not an eight bit counter.

The output of the counter is set to zero at
switch-on, and it can be manually reset to
zero at any time using the reset switch.
However, the counter is incremented as
the second buffer is activated, and it is
therefore at 1 when the first data byte is fed
through to the UART. This is correct in
that the controlled equipment would nor-
mally be started at program number 0, and
the pedal should generate a change to prog-
ram 1 when it is first operated.

The next pulse from the control logic cir-
cuit causes the data byte to be transmitted
by the UART, and the next one resets the
bistable. This switches off the oscillator,
and returns the unit to the stand-by mode.
It remains in this state until the foot switch
is operated again. The two bytes are then

Fig. 1. The MID! Pedal block diagram

i

QUTPUT 1
INVERTER / T Py] CODE
e ERATOR
ORIVER — eyt BUFFER o s
OUTPUT 2} | inveRTERS cLock ! o
DRIVER OSCILLATOR £ I (el I
7 -
— 8BIT 78IT :
] TRISTATE BINARY |t
BUFFER || counTer

BISTABLE jpr=oi

OSCILLATOR

GATED CONTROL

LOGIC . FLIP/FLOP

L

Everyday Electronics, March 1989

r Y=t i . : HEX
B - .) v .
) }m\ 52\' 's:\-s.'. a SHATCH
‘3 el B r) Yer it
: ; = At
- IC3
[TLHC 245
2y "
L) T
1 1"
A 1 B T E r9 < RIDERIIS Ri2
Skt ct 0N 10K 10Kk 10k
|UUTPUM} szg_n
) . : 13
3 L] 10
3 - el
2 . __'_..c-.
=1 1C4 (ol 0"
24 7uHC2es 4024 8E -
S
3 i LRIk
o aes
- " ko,]_,
LA} e £ T |
.T_‘lonn]'
]

Fig. 2. The circuit for the transmitter section of the unit

transmitted once more, but with the
counter being advanced by one prior to the
data byte being sent. The unit thus pro-
vides the desired action, with a series of
automatically incremented program
change messages being transmitted.

TRANSMITTER CIRCUIT

Fig. 2 shows the circuit diagram for the
section of the unit that generates and trans-
mits the header and data bytes. IC2 is the
UART, and this is the industry standard
6402 type. This is supplied with a positive
reset pulse at switch-on by C3 and R8. IC1
is a quad 2 input NOR gate, but ICla and
IC1b are wired as inverters. They are used
as the clock oscillator and a buffer stage
respectively. The clock frequency is set at
500kHz by ceramic resonator X1. IC2
requires a clock signal at sixteen times the
transmission baud rate, and this gives the
desired 31.25 kilobaud output.

The serial output signal from IC2 drives
two common emitter switches (TR1 and

TR2) having open collector outputs. The
l.e.d.s in the opto-isolators at the inputs of
the controlled equipment act as the collec-
tor loads for TR1 and TR2, with R1 and R4
limiting the drive current to a suitable
figure.

IC3 and IC4 are the octal tristate buffers,
and are in fact octal transceivers. However,
in this application they are permanently
wired in the “receive” mode and are only
used as buffers. The four most significant
bits of IC3 are tied to the appropriate logic
levels to generate the program change
code, while the least significant bits are
controlled by a hex switch (S1 to S4). Note
that if the unit is only required to transmit
on MIDI channel number 1, the hex switch
can be omitted (but R9 to R12 should still
be included, or replaced by link wires).

Hex switches are designed for ‘“on-
board” mounting, and this is not a panel
mounted control. In the unlikely event that
frequent channel changes will be required,
probably the best option would be to use
miniature toggle switches for S1 and S4,

Fig. 3. The control logic circuits

but the channel numbers would then have
to be entered in binary form.

ICS is the seven bit binary counter, and it
is reset at switch-on by C7 and R13. It can
be manully reset using S6. These signals are
also used to reset the flip/flop incidentally.

SUPPLY

The circuit requires a reasonably stable
five volt supply, and this is obtained from a
nine volt battery via monolithic voltage
regulator IC6. Battery operation is made
feasible by the use of CMOS integrated cir-
cuits throughout the design, including the
6402 which has a remarkably low current
consumption for such a complex device.
The total current consumption of the cir-
cuit is only about six milliamps or so.

CONTROL CIRCUIT

The circuit diagram for the control cir-
cuitry is shown in Fig. 3. The bistable is
formed from the two remaining gates of

[.;ae, ! é
hie L R

ICic

4001BE IC1d $
[]

o c10
= 100n
K
D1
ING14B
:.] 1 15 1o
icr |, o 18
TLC 555P LO178E

Everyday Electronics, March 1989

183

IC1. S7 is the foot switch, and it is “de-
bounced” by R16 and C8. This “debounc-
ing” is essential if multiple triggering of the
unit is to be avoided. A simple 555 astable
circuit based on IC7 provides the gate oscil-
lator stage.

IC8 forms the basis of the control logic
stage, and this is a CMOS 4017BE one of
ten decoder. It is reset at switch-on by C10
and R19, and it is reset each time output
"'4” (pin 10) goes high, due to the coupling
from this pin to the reset terminal via D1.
This effectively relegates 1C8 to a one of
four decoder. Actually only outputs *“1”
and “3" are used, and these provide the
pulses that initiate the transmission of data
from the UART.

Transistor TR3 acts as a simple gate and
inverter stage that mixes the two output
signals and converts the positive output
pulses from IC8 into the negative types
required to drive the UART properly.
When IC8 resets itself after four oscillator
cycles, it also resets the bistable and
switches off the oscillator.

ICY is the divide by two flip/flop circuit,
and this is actually a CMOS 4013BE dual D
type flip/flop with both sections wired as
divide by two stages and connected in
series. The additional divider stage is
needed because the control logic circuit
operates on cycles of four oscillator pulses
rather than on two pulse cycles. The extra
divider stage keeps the control logic and
flip/flop circuits properly synchronised.

3
CONSTRUCTION O . aB o
Details of the printed circuit board are ; A On: E a
provided in Fig. 4. The first point to note e P = +
here is that all the d.i.l. integrated circuits O - :
are CMOS types, and therefore require the | TR T TTo oo oouy & oI

normal anti-static handling precautions to
be observed. In particular, they should all
be mounted in integrated circuit holders. m— = |

Take special care with the 6402 UART o{goooooooooooq 0000

which does not rank as a particularly cheap

component. Do not fit the integrated cir- :

cuits into their holders until the unit is in all

other respects finished, and handle them as D O= ro
little as possible. 8 ? +] |T 000 I'ILOTio-—o-—?

The board is a single-sided type but a
number of link wires are required. These
can be made from 22 s.w.g. tinned copper O o
wire. Provided they are kept reasonably 9
taut it should not be necessary to insulate § 9

any of them with sleeving. At this stage
only pins are fitted to the board at the point
where it will eventually be connected to the - Q
off-board components.

Provided the specified hex switch is used — su 000000000—0 1 ob o
it should fit onto the board without too d—l 2 2
much difficulty. Other types may have a 1
different pin arrangement though. Also, ‘*tﬁ) 90 2o t\
the circuit assumes that a switch is closed Q
when it must generate a logic 1 level, but ! !I_
some hex switches go open circuit when —0 Q

Fig. 4. Details of the printed circuit board.

they must generate a logic 1 output signal.
Use of the specified switch is strongly
recommended.

The prototype is housed in an aluminium . 00000

instrument case which has approximate ! " 0 s , .

outside dimensions of 200 by 150 by 50 mil- L. H\g

limetres, and this comfortably accommo- I - \
ooon

The latter are six HP7 cells fitted in a plastic
holder, and these couple to the unit via an
ordinary PP3 style battery connector,

The prototype is built to operate with an 0o |
external foot switch which connects to the
main unit by way of a miniature jack socket 0=
mounted on the rear panel. Obviously it
can be built with a heavy duty non-locking o—
push button switch fitted on the top panel if
preferred, and a sloping-front style case o

dates everything including the batteries. I'o

-]

$ 9—8-:0J
f a d
iz
gl
[

184 Everyday Electronics, March 1989

ey

COMPONENTS B

ok

See page 193

Resistors
R1,R4 470 (2 off)
R2,R5 6k8 (2 off)
R3,R6 3k3 (2 off)
R7,R16 1M (2 off)
R8to R12,
~R15,R17,
R18 10k (8 off)
R13,R18 100k (2 off)
R14 100
R20,R21 33k(2 off)
R22 5k6
All 0.25W 5% tolerance
Capacitors
C1,C2 270p ceramic plate
(2 off)
C3 47 radial elect 16V
C4,C5,C7 100n ceramic (3 off})
Ccé 100w radial elect 10V
C8 220n polyester
C9,C10 100n polyester
(2 off)
Semiconductors
IC1 4001BECMOS
quad 2input NOR
IC2 6402 UART
IC3,IC4 74HC245 octal
transceiver (2 off)
IC5 4024BE 7 bitripple
counter
IC6 nA78L05 100mA 5V
regulator
IC7 TLC555P low power
timer
IC8 4017BECMOS 1 of
10decoder
IC9 4013BE CMOS dual
D type flip/flop
D1 1N4148 silicon
signal diode
TR1,TR2 BC559siliconpnp
{2 off)
TR3 BC547 silicon npn
Switches
S1t0S4 Hexswitch
S5 S.P.S.T. sub-min.
toggle
S6 Push to make, non-
locking type
s7 Push button (see
text)
Miscellaneous
B1 9volt(sixHP7sin

plastic holder)
SK1,SK2 5way 180degree
DIN socket (2 off)
X1 500kHz ceramic
resonator
Case about 200x150%50 mil-
limetres; printed circuit board
available from the EE PCB Ser-
vice, order code EE639; 8 pin d.i.l.
i.c. holder; 14 pin d.i.l. i.c. holder
(3 off); 16 pin d.i.l. i.c. holder; 20
pin d.i.l. i.c. holder (2 off); 40 pin
d.i.l.i.c. holder; battery connector
(PP3 style), pins, wire, solder, etc.

Approx. cost
Guidance only

£30 ;... ...

Everyday Electronics, March 1989

B A
MIDI
/';\\ PEDAL
O e & OUT 1 OUT 2
1 |
i]
IN THRU ouT IN THRU
MIDI
SK2 SK1 I][l EFFECTS
Fig. 5. The connections to _ i
SK1 and SK2.

might then represent the best form of hous-
ing for this project. Both the case and the
switch must be heavy duty types if a built-in
foot switch is used.

Whichever form of construction is
selected, the printed circuit board is
mounted on the base panel of the case on
stand-offs, and the on/off switch, reset
switch, and output sockets are mounted on
the front panel. Five way 180 degree DIN
sockets were not a random choice for SK1
and SK2 —these are the standard MIDI
connectors. Fig. 5 shows the correct
method of wiring these to the printed cir-
cuit board. The unit is completed by wiring
the battery clip, reset switch, and on/off
switch to the board, and then finally con-
necting either the foot switch or its socket
on the rear panel.

TESTING AND USE

To test the pedal, simply connect one of
the output sockets to the MIDI IN socket
of any item of equipment that responds to
MIDI program change messages. Ideally
you should use something like a synthesiser
that shows the current programme number
on its display, or you may have a computer
plus MIDI interface and a utility program
that displays received data.

Repeatedly activating §7 should result in
the program switching the 1 first, then 2,
and so on. If you make your own connect-
ing cable, pins 4 and 5 on one plug connect
to the same pins on the other plug. They
are not cross connected (as in some DIN
audio leads). Pin 2 connects to the cable’s
screen.

There are a few points that need to be
borne in mind when testing and using the
unit. First of all, bear in mind that if the
controlled equipment is set to an “omni
off” mode, it will almost certainly not
respond to MIDI program change mes-
sages unless the MIDI pedal and the con-
trolled equipment are set to the same MIDI
channel.

Many pieces of MIDI equipment can be
set to ignore program change instructions,
and obviously, where appropriate, the con-
trolled equipment must be set to respond to
program change messages.

ANOMALIES

Confusion often arises with MIDI due to
anomalies in the numbering of programs
and channels. The hex switch will almost
certainly be numbered from 0 to 15, which
is the range of binary values it produces.
On the other hand, the convention is for
MIDI channels to be numbered from 1 to
16. Accordingly, if you wish to set the panel
to (say) MIDI channel number 9, the hex
switch should be set to position “8”. In
other words you must set the switch to one
less than the desired MIDI channel.

Things are less straightforward with
MIDI program numbers. The actual range
of numbers used in the messages is from 0
to 127, and this is the program numbering

Fig. 6. Suggested MIDI wiring for a
system having one instrument plus a
MIDI effects unit

range used by some manufacturers. How-
ever, others use 1 to 128, and some use a
totally different system. For instance, I
have a Casio synthesiser which provides
manual program selection via two sets of
push button switches marked A toH, and 1
to 8. The programs are therefore num-
bered from A1 to H8!

The equipment manuals should make it
clear what method of numbering is used,
and provide a conversion table where an
unusual method of numbering is in use.
Bear in mind that most pieces of equipment
do not use the full range of 128 programs.
Sending an out-of-range program number
will normally just result in it being ignored

' by the equipment, rather than causing any-

thing catastrophic.

CONNECTING

The normal method of connecting two or
more items of MIDI equipment together is
to connect the THRU socket of one unit to
the IN socket of the next, and so on, build-
ing up a chain of connections as long as
required. In practice things do not neces-
sarily work out quite as easy as this.

Many MIDI instruments, especially the
keyboard types, lack a THRU socket.
Also, the chain system can produce poor
reliability due to the signal being slightly
degraded as it passes through each unit.
The extra output on the pedal unit can
therefore be very useful, and it is probably
worthwhile using it, even where the chain
system of connection could be used. For
example, with a synthesiser and effects unit
that are both to be controlled from the
pedal the method of connection shown in
Fig. 6 would be the best one to use. a

185

T Sy

