There’'s been a quiet revolution in the use and
manufacture of electronic musical
instruments, and it's all due to a new
communications standard that appears as a
few innocent sockets on the rear panel.

by ROB EVANS

At some time or other, most rcaders
will have been frustrated by a lack of
standardization when trying to interface
two devices. From that special thick
toasting bread not fitting in the pop-up
toaster, to a new computer terminal
tr yrefuses to talk to the mainframe
sy...m; incompatibility abounds.

The music industry has been no ex-
ception over the years, the manufactur-
ers rigidly sticking to their own particu-
lar standards for interconnecting elec-
tronic instruments. Musicians were
forced to use various oddball adaptor
boxes. or purchase all of their equip-
ment from one company — hardly satis-
factory solutions.

This problem was tackled on an inter-
national scale in about 1981, when the
U.S. firm Sequential Circuits Incorpo-
rated proposed a universal communica-
tion standard for synthesizers. The en-
suing years saw counter proposals from
the Japanese companies, and worldwide
discussion in an attempt to find a versa-
tile standard, that would not become
quickly obsolete.

The result of this remarkable co-
a4 tion between manufacturers is the
MuSical Instrument Digital Interface

Typical rear panel of a MIDI equipped synthesizer, showing the MIDI connectors.

standard, or as it is more commonly
known; MIDI. More rcmarkable still, is
the thorough manner in which this sys-
tem has been implemented into the cur-
rent generation of electronic musical in-
struments. From home organs to home
computers, MIDI can be found in virtu-
ally any microprocessor based equip-
ment designed to be associated with
music.

What is MIDI?

MIDI is basically a communications
link. This is probably the understate-
ment of the year, considering the effect
it has had on the music industry. But
leaving the musical implications aside
for the moment, MIDI can be seen sim-
ply as the hardware and software stand-
ards that are used for communication
between computer-based musical instru-
ments.

These standards are defined in the
MIDI 1.0 specification, which has been
developed by the International MIDI
Association (IMA). This publication
lists the various codes that apply to
standard musical performance events
(e.g.,’note on”), and the electronic
manner in which these codes are trans-

122 ELECTRONICS Australia, January 1988

ferred.

Basically, MIDI is an asynchronoy.
scrial data link, not unlike the RS2:>
standard that may be familiar to man,
rcaders (sce EA Reference Notebook:
October 1987 issue). Each digital bit o
the information code is sent one afier
the other, as a data “stream”™ along
single circuit. Thesc bits are arranged in
groups of eight to form the code word,
and are preceded by a “start”™ bit ang
followed by a “stop™ bit or rest period
(sce Fig.1).

The start and stop bits of the MIDj
format are nccessary due to the asvn-
chronous, or intermittent nature of the
data. A start bit (always a space or low
logic level) announces the arrival of 4
code word, triggering the receiver tim-
ing circuits. Whereas the stop bit (al-
ways a mark or high logic level) allow,
the receiving circuitry to ready itself for
the next code word. This next word
could arrive at any time depending on
the density of the transmitted data. or
in the practical sense, the intensity of
the musical information. Indeed, a cou-
ple of “stabbed” chords and manipula-
tion of the pitch bend facility on a syn-
thesizer will cause quite a flurry of ac-
tivity on the MIDI bus.

To reduce timing delays between
master and slave instruments, MIDI
data is transferred at a rate of 31.23K
bits per second (bps). For a data word
with a total of 10 bits (one start, eight
data, and one stop), this gives 320us for
each word. A parallel system of data
transfer, where all bits of a word are
sent simultaneously would obviously be
faster, but could not be justified due to

(e expense
ire system
o the R
14-Pi" DClI
Bus) stand:
ments. Altl
well, the ra
ished its car

MIDI har

MIDI de
via a shielc
nated in I
connectors.
floating ("¢
isolated by
(see Fig.2).
safety of t
removes th
hum and
duced in th

When a
a MIDI i1
tablished il
conversely.
rest perioc
rangement
loop practi
a logical h
dication. 1
tive” (cur:
mitted me
unaware ¢
ods. This
tem with
breaking @

The M1
a MID1 *
an exact r
the MID.
optional,
‘included
chain” a
series.

MIDI di

The ac
MIDI sy
byte forn
the trans
is termec
the type
will tell
deal witk
called (y
As furdl
bytes h
(MSB) s
have the

MIDI
apply to
tiple sy
Channel!
ent in t
bits, wi
types of

e T PR R R, P

the expense and complexity of a multi-
wire system. In the chaotic pre-MIDI
days, the Roland Corporation had the
14-pin DCB (Digital Communication
Bus) standard fitted to their instru-
ments. Although this system worked
well, the rapid acceptance of MIDI fin-
ished its career in one quick blow!

MIDI hardware

MIDI devices are connected together
via a shielded two wire system, termi-
nated in 180 degree, S-pin DIN type
connectors. The receiver circuitry is
floating (“ground” not connected), and
isolated by a high speed opto-isolator
(see Fig.2). This technique ensures the
safety of the receiver electronics, and
removes the possibility of earth loop
hum and other interference being in-
duced in the system.

When a MIDI “out” is connected to

MIDI “in”, a 5SmA current loop is es-

.lished lf a low logic level is present;
conversely, no current flows during a
rest period (high logic level). This ar-
rangement is opposite to normal current
loop practice where current flows during
a logical high, providing line failure in-
dication. The MIDI system is only “ac-
tive” (current flowing) during a trans-
mitted message, each instrument being
unaware of the other during rest peri-
ods. This enables re-patching of the sys-
tem without the havoc created by
breaking a current loop.

The MIDI 1.0 document also specifies
a MIDI *“thru” facility, which delivers
an exact replica of the signal received at
the MIDI “in” connection. Although
optional, this facility is almost always
included to allow the user to “daisy
chain” a number of instruments in
series.

.n)lDl data codes

The actual codes transmitted in the
MIDI system generally have a multi-
byte format, due to the large range of
the transmitted variables. The first byte
is termed the Status byte, and defines
the type of message being sent. This
will tell the receiver software how to
deal with the following bytes, which are
called (you guessed it!) the Data bytes.
As further identification, the Status
bytes have the most significant Dbit
(MSB) set to 1, whercas the Data bytes
have the MSB set to 0.

MIDI messages may be configured to
apply to a specific instrument of a mul-
tiple system, by means of the MIDI
Channel number. This number is inher-
ent in the Status byte as the last four
bits, with a range of 1 to 16. These
types of transmissions are loosely called

) 32005)
i 32;;5‘ !
! | d
(MARK] - ! !
START| DO | D1 D2 | D3 | D4 | DS | D6 | D7 |STOP
(SPACE)

Fig.1: The MIDI data word format. MIDI data is transmitted at 31.25 kilobits per

second.

Channel messages, while general infor-
mation transmitted for all channels are
designated System messages.

A common example of a MIDI Chan-
nel message is the simple transfer of
note information. When one MIDI key-
board instrument is driving another, de-
pressing a note key on the master key-
board will induce the appropriate sound
from the slave. The 3-byte message sent
in this situation is configured as follows:

1001nnnn Okkkkkkk Ovvvvvvy

Where: 1001 is the code for “note
on”. : nnnn is the MIDI channel
number (range:0-15 for channels
1-16). kkkkkkk is the note
(range:0-127). : vwyvvwy is the key
velocity (range:0-127).

In a synthesizer, the key velocity code
is derived from the time taken for the
key to be depressed its full distance.
With logarithmic scaling, this time is
roughly proportional to how hard the
key has been played. Therefore the key
velocity data may be used to control the
resulting note volume, providing player

dynamics. The code range is 1-127, de-
faulting to 64 for instruments without
this facility. Code 0 indicates ‘“‘note off”
(see MIDI code table).

If a Middle C note (code 60) was de-
pressed with a moderate velocity (say,
code 64), and the instrument pro-
grammed to send on MIDI channel 5
(code 4), the resulting MIDI message
would be:

10010100 0011100 01000000

An example of a System message is
the MIDI Clock code, which is sent by
a master sequencer (or computer) to
synchronize a time related slave device,
such as another sequencer or drum ma-
chine. This message is sent regularly at
a rate of 24 clocks per quarter note, and
is not MIDI channel specific. Of course,
a clock has no relevance to a standard
synthesizer, and will be ignored. As
stipulated by the MIDI standard, the
one-byte clock transmission will appear
as: 11111000.

Although the MIDI 1.0 document is
an absolute specification, it has a mes-

SUMMARY OF MIDI STATUS BYTES
Status No. of Data | Description
D7...D0 Bytes
Channel Voice Messages
1000nnnn 2 Note off any event
1001nnnn 2 Note on any event (velocity 0=note off)
1010nnnn 2 Polyphonic key pressure/after touch
1011nnnn 2 Control change
1100nnnn 1 Program change
1100nnnn 1 Channel pressure/after touch
1110nnnn 2 Pitch wheel change
Channel Mode Messages
1011nnnn [2 Selects channel mode
System Messages
11110000 wwer System Exclusive
11110sss Oto2 System Common
111111tt 2 System Real Time
Notes

nnnn: channel code = channel number

-1

e.g., 0000 is channel 1, 0001 is channel 2, e.t.c.,
»***: any number of bytes, followed by End of System

Exclusive flag (11110111).
sss:1to7
ttt:0to7

ELECTRONICS Australia, January 1988 123

ii

fnsicle MIDI

sage format that allows for data that is
exclusive to a particular manufacturer.
This is called System Exclusive informa-
tion, and allows manufacturers to capi-
talisc on the common operating system
of their instruments. For example, the
entire memory of one unit may be
transferred to another in a couple of
seconds (MIDI memory dump). This in-
formation could not be interpreted by
an instrument from another company,
and therefore has a two-byte ‘‘pream-
ble” containing the manufacturers iden-
tification number. The actual data may
be of any length, but must be followed
by a one-byte System Exclusive End
code. This system removes any tempta-
tion for manufacturers to compromise
MIDI compatibility by the use of non-
standard codes.

The above examples show only a few
of the many messages available; the
MIDI specification has suitable codes
for virtually any music related event. A
full listing and discussion of these MIDI
messages is available in the MIDI 1.0
document, although a summary of
Status bytes appears on page 123.

MIDI applications

Electronics has infiltrated most
aspects of life, and musical instruments
are no exception. A standard system
that enables these common devices to
communicate opens new doors for the

contemporary musician.

By simply connecting the MIDI out-
put of an elected master instrument to
the MIDI input of a slave, the com-
munication link is established if their
channel numbers match. Additional in-
struments may then be arranged in
“daisy chain” fashion by connecting a
slave instrument’s “thru” output to the
following slave’s “in”" socket (see Fig.3).
This basic configuration enables a musi-
cian to easily create unique sound tex-
tures and huge “walls of sound”, with-
out leaving the comfortable piano stool!

In fact, the whole MIDI protocol is
very ‘“‘user-friendly”, requiring few pro-
gramming steps to establish a large
MIDI network. This is because a slave
instrument simply accepts and processes
data as it appears at the MIDI “in”
port, even if its keyboard is being
played at the same time. In effect, a
MIDI equipped synthesizer reacts to
MIDI messages as if they had originated
from its own control panel or keyboard.

Similarly, the MIDI “out” socket is
always active, sending messages as the
keyboard and controls are used.

Synthesizers are now becoming avail-
able in a “keyboardless™ form, virtually
identical to the version with a keyboard,
but produced in a rack mount cabinet.
These units are called Expander Mod-
ules, and are more cost and space effi-
cient. To upgrade a system, the user
simply connects the expander module to

the master keyboard via a MIDI link,
remotely controlling all performance
aspects.

Currently available modules often
have multi-timbral capabilities, which is
ideal for sequencing applications (sce
Glossary). An example of this is an
eight-voice polyphonic instrument (eight
separate sound generators), where each
voice may be assigned to a differen;
sound and MIDI channel. The se-
quencer is then able to control eight in-
dependent, monophonic sound sources
from the one unit, via eight MIDI chan-
nels.

A typical example of a complete
MIDI system is shown in Fig.4, al-
though many other configurations are
possible. It consists of a master key-
board, a number of expander modules,
a drum machine, and a sequencer.

In such an arrangement the sequencer
is the centre of activity, recording MIDI
messages sent from the master key-
board, and playing them back to the en-
tire system. As the messages for each
section of a composition are recorded
into the sequencer, a MIDI channel
may be nominated, which will then be
inherent in this information (see MIDI
codes). When played back, the slave
modules will “look” for messages corre-
sponding to their set channel, therefore
responding to different sections of the
composition.

The sequencer will also transmit regu-
lar MIDI clock codes in sympathy with
its internal tempo clock. This informa-

FROM
SERIAL
INTERFACE

MASTER INSTRUMENT

-7

[—SLAVE INSTRUMENT

220
3

MIDI IN

MID{ OUT

!
|
|
|
|
|
|
|
i
|
|
|
|
|
|
I
|
|
I
|
|
|
|
I
|
|
|
|
|

MIDI THRU

TO MIDI IN
OF OTHER

OIN-DIN CABLE

G ‘.IK‘
; ING1Z

SLAVE INSTRUMENTS

¥ Voo
OPTO
ISOLATOR

270

{FOR PC900)
T0

 » SERIAL
INTERFACE
{eg: UART}

FROM
SERIAL
INTERFACE

%PC900 OR 6N138

Fig.2: Standard MIDI interfacing circuitry. Data is transferred via a 5mA current loop.

124 ELECTRONICS Australia, January 1988

B L T N B] v'!:!...._'._'z..ta

B TR R T i\ (R P TE s s Ry TSI

tion is interleaved with all other mes-
sages, and interpreted by the drum ma-
chine as its tempo clock, synchronising
the whole system.

Such a system is quite powerful, al-
though still rather primitive when com-
pared to the facilities of some contem-
porary recording studios. The studio
MIDI system may reach as far as the
ubiquitous mixing console, where chan-
nels and outputs are programmed to
mute under the control of the master
sequencer.

Even recently produced signal pro-
cessing equipment, such as delay and
reverb units carry substantial MIDI fa-
cilities. By interfacing them in a MIDI
system, many of the parameters may be
altered on call, or as part of a sequence.
The proverbial one man (or woman)

ad takes on a new meaning with the
MIDI protocol!

Computers and MIDI

Without computers there is no MIDI,
for every device that communicates via
this system is microprocessor based.
The common Personal Computer is ob-
viously in this category, and therefore
should be able to exchange information
with MIDI instruments. This fact has
been exploited by a number of small
companies, who are now producing
MIDI conversion kits and appropriate
software for some popular computers.
Amongst others, software is available in
Australia for the Commodore 64, the
Apple II, Apple Macintosh, and IBM
PC or compatibles.

A home computer coupled to a MIDI
interface can be a powerful music com-

sition tool and sequencer. Music may

composed, displayed, edited, played
and printed with one composite soft-
ware package on a common PC. In fact,
the implemented software will generally
set the limits of its performance. Con-
versely, a manufacturer’s dedicated se-
quencer is often more user-friendly and
reliable, particularly when compared to
4 home developed interface and soft-
ware package (this is based on personal
experience!).

Designing MIDI interface hardware is
assisted by the slightly odd MIDI baud
rate of 31.25kbps. This rate is based on
an even division of common tomputer
clock rates (IMHz divided by 32, 2MHz
divided by 64, and so on). This enables
the processor clock to be divided easily
by the internal dividers of a serial inter-
face chip (e.g., Motorola 6850 ACIA).
Some computers already have a suitable
serial port, and with ‘the appropriate
clock division, are capable of transmit-
ling MIDI information directly.

== TO FURTHER
SLAVE MODULES

AR

MASTER

SYNTHESIZER SYNTHESIZER

SLAVE
SYNTHESIZER

| S

Fig.3: Large MIDI systems may be implemented by simply “daisy chaining” a

number of instruments in series.

MASTER SYNTH
{WITH KEYBOARD) _-’.EEJ(PIZL:\‘%TE};ER
) G . ,HRU/-.-\W i MODULES
! % DRUM EXPANDER

MACHINE MODULE
N ouT
SEQUENCER

Fig.4: An example of a complete MIDI system capable of programming and

playing entire musical compositions.

The future

As early as 1984, some manufacturers
were critical of perceivable delays en-
countered when transferring MIDI note
data. These delays creep into the pro-
ceedings when a large number of notes
are sent to a number of instruments,
along the same line. At 320us per
word and 3 words per MIDI note mes-
sage, it takes about lms to transfer a
single note. If the master instrument is
sending different 5-note chords to each
slave instrument (not an unusual situa-
tion), we already have about a 15ms
delay. This time can easily increase if
continuous multi-byte information, such
as Pitch Bend messages are sent simul-
taneously. Although these delays are
not a problem for a real-time perform-
ance (that is, a human performer actu-
ally playing the master keyboard!),
large sequencer-based systems can be
affected.

In extreme cases of high information
density, the data crowding reaches the
extent of effectively “saturating” the
MIDI bus. Not surprisingly, the whole
system grinds to a halt. Some of the
more expensive sequencers solve this
problem by providing a separate serial
interface and MIDI out socket, for dif-
ferent MIDI channels. This means that
each output socket will transmit MIDI
information for only one channel, and is
connected to only one slave instrument,

The IMA people may have envisaged
these problems when developing the
MIDI 1.0 specification, for it states that
successive messages of the same type
may be sent without a Status byte. If

notes are turned off by sending a note-
on command of zero velocity, then the
note-on Status need only be sent at the
beginning of a note data stream. What
was 3 bytes for note-on and 3 bytes for
note-off, becomes 2 bytes for each. Not
much difference you might say, but it
could eliminate the proverbial straw!

In general use, these crowding and
delay problems rarely appear and MIDI
has an ensured future. A whole industry
has emerged to supply contemporary
musicians with MIDI software, inter-
faces, and general MIDI manipulation
equipment.

The MIDI explosion has even
prompted the development of new
musical instruments, such as MIDI
transmitting devices based on percus-
sion, wind, and stringed instruments.
From the performance aspect, a musi-
cian no longer has to hide behind a
bank of instruments (although he may
want to!). All that is required to run a
large number of MIDI equipped instru-
ments is one versatile MIDI control de-
vice, @

GLOSSARY

SYNTHESIZER: Electronic musical in-
strument capable of synthesizing natu-
rally occurring sounds, or constructing
unique timbres.

SEQUENCER: Machine with a memory
system able to record, edit, and play-
back the electronic codes for musical
time related events (notes etc.).

DRUM MACHINE: A dedicated se-
quencer arranged to control internally
generated drum or percussion sounds.

ELECTRONICS Australia, January 1988 125

